
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

1 IJDCST

Optimized Multi Data Aggregators to Support High Web

Traffic Push Servers

1
 MR N . HARI KRISHNA MCA. [MTECH],

2
 MR MD . SIRAJUDDIN . MTECH

1FINAL M TECH STUDENT, 2ASSIATNANT PROFESSOR,

1,2
DEPT OF COMPUTER SCIENCE AND ENGINEERING, SRI MITTAPALLI COLLEGE OF ENGINEERING,

TUMMALAPALEM, GUNTUR (DT)

Abstract: Continuous queries are persistent queries that can transform a passive web into an active environment by

providing time varying dynamic query results useful for online decision making. For scalable handling of push

based data dissemination, prior approaches used a network of data aggregators. Their implementation required

Greedy Heuristics Algorithm along with pre configured incoherency bounds to manage both multiple aggregators

and multiple clients for supporting server push based communications. Existing heuristic-based approaches can only

explore a limited solution space and hence may lead to sub-optimal solutions. So we propose to use an adaptive and

cost-based approach. In a network of data aggregators, each dedicated and judiciously chosen aggregator serves a set

of data items at specific coherencies. It involves decomposing a client query into sub-queries and executing sub-

queries using aggregators with their individual sub-query incoherency bounds. Our cost model takes into account

both the processing cost and the communication cost unlike prior approaches. Adaptive and cost-based approach has

better performance in terms of both processing and communication cost than plain Greedy Heuristics approach and a

practical implementation validates the proposed claim.

Index Terms: Continuous Queries, Distributed Query Processing, Data Incoherence, Network Data Aggregator.

I. INTRODUCTION

Distributed stream processing has been main

commercial gaining process in research attentions in

the recent years. In such a system, queries submitted

by the clients (e.g., continuous queries monitoring the

streams or ad hoc queries on the historical and

current status) would be distributed to the various

processing servers for processing. To evaluate the

client queries, the streaming data have to be

disseminated from the sources to the distributed

servers. Due to the continuity and massiveness of the

data, it is critical and challenging to design an

effective, efficient and scalable dissemination system.

Figure 1: Distributed query processing.

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

2 IJDCST

As shown in the above figure every user data can be

stored in source data, and then every user can access

that data using processing node. By using processing

node users can register their data in register service.

In this process every client connects with equivalent

server according their requirements. Client enters into

communication systems then clients submit queries

to the servers with their own preferences on data

coherency requirements. Data coherency is an

affective design for data processing between different

clients. Based on the client requirements of the

running queries, each server would have its own

interesting object set as well as its coherency

requirement of each interesting data object.

According to the client requirement servers

are organized into one or more dissemination trees

(with the data source being the root node) so that

data/messages are transmitted to each server through

its ancestors in the dissemination tree. Each node

present in tree would selectively disseminate only

interesting client data to its child nodes by filtering, it

includes only necessary data, and it eliminates

unnecessary data. Consider the above process present

between client and server communication.

Traditionally greedy heuristic algorithm for accessing

services from server with their requirements. In that

multiple aggregator’s support multiple clients for

supporting server push based services. But these

results are for performing limited services. In this

paper we are proposing a Adaptive Cost based

approach, in that each dedicated judiciously chosen

aggregators a set of items at specific coherences.

Compared to existing greedy heuristic algorithm our

proposed work will give efficient results.

II. RELATED WORK

We first formulate the problem by presenting the

system model, the definition of the metric as well as

the formal problem statement. Then we motivate our

work by identifying the potential problems of the

existing techniques.

Figure 2: Query formulation regarding client

request.

Every client submits requests according their

relational requirement involving a subset of data

objects through a server (or the data source), and

specifies a preference on the coherency on each data

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

3 IJDCST

object. The possible metrics are number of changes

since the updates accessed with each client. These

results can be obtained using greedy heuristic model

approach. But these results are not accessed in large

data storage of clients. So finally we are composed

Adaptive Cost based `approach for large data storage

client requests.

III. EXISTING APPROACH

Continuous queries are persistent queries that allow

users to receive new results when they become

available. While continuous query systems can

transform a passive web into an active environment,

they need to be able to support millions of queries

due to the scale of the Internet. Continuous queries

allow users to obtain new results from a database

without having to issue the same query repeatedly. In

order to handle a large number of users with diverse

interests, a continuous query system must be capable

of supporting a large number of triggers expressed as

complex queries against resident data storages. Push,

or server push, describes a style of Internet-based

communication where the request for a given

transaction is initiated by the publisher or central

server. It is contrasted with pull, where the request

for the transmission of information is initiated by the

receiver or client. Uses server push based techniques

for initiating communications. Push services are often

based on information preferences expressed in

advance. This is called a publish/subscribe model. A

client might "subscribe" to various information

"channels". Whenever new content is available on

one of those channels, the server would push that

information out to the user.

Figure 3: Greedy Heuristic Local search

algorithm

 For scalable handling of push based data

dissemination, we use a network of data aggregators.

Data refreshes occur from data sources to the clients

through one or more data aggregators. Heuristic

refers to experience-based techniques for problem

solving, learning, and discovery. Uses Greedy

Heuristics Algorithm along with pre configured

incoherency bounds to manage both multiple

aggregators and multiple clients thus delivering a

better performance.

IV. PROPOSED APPROACH

Prior Approaches use Greedy Heuristics Algorithm

along with pre configured incoherency bounds to

manage both multiple aggregators and multiple

clients for supporting server push based

communications. Query optimization strategies

developed using Greedy Heuristics Algorithm

depends on processing cost only. Existing heuristic-

based approaches can only explore a limited solution

space and hence may lead to sub-optimal solutions.

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

4 IJDCST

So we propose to use an adaptive and cost-based

approach. Our cost model takes into account both the

processing cost and the communication cost.

Adaptive and cost-based approach has better

performance in terms of both processing and

communication cost than plain Greedy Heuristics

approach.

V. ADAPTIVE COST BASED

APPROACH

The adaptation cost approach operates in rounds. We

are representing in the form of tree notations. The

root node initiates each round by creating a token.

Only when a node holds a token, could it make an

adaptation attempt. In this cost based approach we

are performing following three categories of data.

Query Optimization: Process of producing an

optimal (close to optimal) query execution plan

which represents an execution strategy for the query.

Example: 3 equivalent query trees (join trees) of the

joins in the following query

Select Ename, Resp

From Emp, Asg, Proj

Where Emp.Eno=Asg.Eno And Asg.Eno=Proj.Pno.

Optimistic Query results.

Search for optimal solutions around a particular

starting point.

Cost Model: There are two types of cost models

present in data aggregation. Firstly we are reducing

total time represented in each cost component and

then we are verifying response time according to the

client request.

Response time: Elapsed time between the initiation

and the completion of a query

Response time =TCPU * #seq instructions + TI /O

*#seq I /Os +TMSG * #seq messages + TTR * #seq

bytes

-where #seq x (x in instructions, I/O, messages,

bytes) is the maximum number of x which must be

done sequentially.

Total time: Sum of the time of all individual

components. Local processing time: CPU time + I/O

time. Communication time: fixed time to initiate a

message + time to transmit the data

Total time =TCPU _ #instructions + TI /O * #I /Os +

TMSG * #messages + TTR *#bytes.

Algorithm: Adaptive Attempt

Begin:

MaxBene fit—0; t—NULL

For each possible transformations t1involving the

children and grand children do

{

If (maxBenefit < benefit (t1) then

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

5 IJDCST

Max Bene fit -----Bene fit (t1)

t----(t1)

}

If(t!= NULL then perform t;

For each child nj do

If (nj) is not a leave node them

Send one copy of the token to nj

End

The above diagram presents the operations to be

executed in a node that receives a token. Each node

receives a token can make its own decision

independently without any synchronization with the

other nodes. Instead of allowing every node to try all

kinds of transformations, we restrict each node to

consider only the transformations involving its

children and grandchildren. These include promoting

a grandchild (node promotion), demoting a child

(node demotion), swapping a child and a grandchild

(parent-child swap and uncle-nephew swap),

swapping two grandchildren (cousin swapping), and

moving a grandchild from one child to another child

(nephew adoption).

VI. EXPERIMENTAL RESULTS

We set the average values of these times as 5ms and

1ms respectively (which may vary in our

experiments), and set the minimum values as 1ms

and 0.125ms respectively. The source server’s

expected filtering time and transmission time are

always set to the minimum value to model an

enterprise class server.

Given the expected filtering time t p i and

transmission time tc i for a node, the exact filtering

time and transmission time of each message are

drawn from two respective exponential random

variable with expected values as t p i and tc i

respectively.

We study the cost of performing adaptations

using our C implementation. To examine the cost of

making adaptation decisions, we use a node that

serves 100 objects and try estimating 100 possible

decisions. We found that td k _ 0:6ms for both the

single-tree and multi-tree approaches. To keep the

adaptation cost affordable, we have to set an

appropriate adaptation period Td. For example, if we

can afford 5% of the CPU time for adaptation, we can

set the adaptation period of this testing node.

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

6 IJDCST

For example, if this node serves 10,000

objects, we have to set the adaptation period larger

than or equal to 12 seconds. Therefore, to keep the

adaptation responsive, the number of objects served

by each server and the number of children and

grandchildren should be kept to a certain limit.

VII. CONCLUSION

For supporting continuous queries for the users,

the service provider is maintained and managed by a

single resource builder. In order to handle a large

number of users with diverse interests, a continuous

query system must be capable of supporting a large

number of triggers expressed as complex queries

against resident data storages. Push services are often

based on information preferences expressed in

advance. This is called a publish/subscribe model.

For scalable handling of push based data

dissemination, we use a network of data aggregators.

So we propose to use an adaptive and cost-based

approach. Our cost model takes into account both the

processing cost and the communication cost.

Adaptive and cost-based approach has better

performance in terms of both processing and

communication cost than plain Greedy Heuristics

approach.

VIII. REFERENCES

[1] Rajeev Gupta, Kirthi Ramaritham, ” Query

Planning For Continuous Aggregation Queries Over

A Network Of data Aggregators” vol 24, No. 6. June

2012.

[2] S.Shah, K. Ramamritham, and P. Shenoy,

“Maintainin Coherency of Dynamic Data in

Cooperating Repositories,” Proc. 28th Int’l

Conf.Very Large Data Bases (VLDB), 2002

[3] Y.Zhou, B. Chin Ooi, and K.-L. Tan,

“Disseminating Streaming Data in a Dynamic

Environment: An Adaptive and Cost Based

Approach,” The Int’l J. Very Large Data Bases, vol.

17, pp. 1465-1483, 2008.

[4] S. Agrawal, K. Ramamritham, and S. Shah,

“Construction of aTemporal Coherency Preserving

Dynamic Data Dissemination Network,” Proc. IEEE

25th Int’l Real-Time Systems Symp. (RTSS), 2004.

[5] R. Gupta, A. Puri, and K. Ramamritham,

“Executing Incoherency Bounded Continuous

Queries at Web Data Aggregators,” Proc. 14th Int’l

Conf. World Wide Web (WWW), 2005.

[6] C.Olston, J. Jiang, and J. Widom, “Adaptive

Filter for Continuous Queries over Distributed Data

Streams,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, 2003.

[7]R.Gupta and K.Ramamritham,"Optimised Query

Plary planning of continuous Aggregation Queries in

Dynamic Data Dissemination

Networks",WWW.2007.

[8] Yongluan Zhou _ Beng Chin Ooi _ Kian-Lee

Tan,” Disseminating Streaming Data in a Dynamic

Environment: an Adaptive and Cost-Based

Approach”, School of Computing, National

University of Singapore, Singapore. E-mail:

fooibc,tanklg@comp.nus.edu.sg

http://www.ijdcst.com/

